

Rewrite with React Hooks
Unbug, 2019

Because we could

2008 2010 2012 2013 2014 2015 2016 2017

pagebraek.jar

advancedScrollList.js

MIHTool

logproxy slide-page

devspaper.com

ddms

social-reshare

swing-amd

generator-webappstarter

DOMSnap

react-native training

js-middleware

wasmrocks.com
idealimbo.com

@unbug

polymerchina.org
gitlab-pages-webhook

2018

Swift and JavaScript
comparison snippets

2019

Open AI Robot

https://www.mihtool.com/
https://www.gitbook.com/book/unbug/react-native-training/details
https://www.wasmrocks.com/
https://github.com/unbug/sj
https://github.com/unbug/sj
https://github.com/open-ai-robot
https://github.com/unbug/codelf

Table of content
1. React Hooks gotchas
2. React Hooks in actions
3. Integrating with third-party libraries
4. Refactor a Container component
5. Summary

React Hooks gotchas

React Hooks resources

1. Introducing React Hooks.

2. YouTube video — React Today and Tomorrow and 90% Cleaner React With Hooks.

3. React Hooks “Hello World”.

4. All new APIs of React Hooks.

5. Everything you need to know about React Hooks.

6. A Complete Guide to useEffect

7. How Are Function Components Different from Classes?

https://reactjs.org/docs/hooks-intro.html
https://www.youtube.com/watch?v=dpw9EHDh2bM
https://reactjs.org/docs/hooks-overview.html
https://reactjs.org/docs/hooks-reference.html
https://reactjs.org/docs/hooks-faq.html
https://overreacted.io/a-complete-guide-to-useeffect/
https://overreacted.io/how-are-function-components-different-from-classes/

The good part of React Hooks
1. Manipulate states and interact with component lifecycle methods in your React

Functions.
2. Reuse components state/lifecycle logic become possible, and state/lifecycle logic can

be tested easily. Reuse components never become so easier.
3. A better Context Providers to avoid “Wrapper Hell”.
4. Avoid frightened by bloated Class Components and no more “xx.bind(this)”, reduce

component logic and easy to maintain.
5. Avoid potential performance issues and bugs by making wrong use of component

lifecycle method, no more suffering from component lifecycle methods.
6. Integrate with third-party libraries become easier and make a lot of sense.
7. Saving your time from thinking about “state VS props”.
8. Have a better experience with Function Programming and Middleware Programming.

NO MORE

APIs will be frequently used

1. useState: manipulate states in your React Functions.

2. useEffect: not just combined the component lifecycle methods of componentDidMount,

componentDidUpdate, and componentWillUnmount

3. useContext: return React.createContext as a value, no more “Wrapper Hell”.

4. useReducer: that’s right, ReactJS now ships ReduxJS.

5. useCallback/useMemo: cache expensive calculations to make the render faster.

6. useRef: enhance of React.createRef().

7. useDebugValue: enhance method for React DevTools.

https://reactjs.org/docs/hooks-reference.html#usestate
https://reactjs.org/docs/hooks-reference.html#useeffect
https://reactjs.org/docs/hooks-reference.html#usecontext
https://reactjs.org/docs/hooks-reference.html#usereducer
https://redux.js.org/
https://reactjs.org/docs/hooks-reference.html#usecallback
https://reactjs.org/docs/hooks-reference.html#usememo
https://reactjs.org/docs/hooks-reference.html#useref
https://reactjs.org/docs/hooks-reference.html#usedebugvalue
https://github.com/facebook/react-devtools

How it works

Hook 1

Hook 2

Hook 3

Hook N

0

1

2

n

[state1, settter1]

[state2, settter2]

[state3, settter3]

[state-n, settter-n]

In orderIn array

React Hooks in actions

Requirements
Update ReactJS to 16.8+

Install the ESLint Plugin

~#1
The codes before refactor

https://github.com/unbug/codelf/blob/legacy-without-react-hooks/src/components/SearchBar.js

The challenges
1. Multiple states
2. lifecycle methods(even a getDerivedStateFromProps method)
3. event handlers
4. and react refs

What we gonna do
1. Turn the class into a function export default function SearchBar(props)
2. Replace all this.props. and this.state. to an empty string.
3. Remove the wrap of render() {//body} function and keep the body codes.
4. Turn all the class methods into pure functions.
5. Refactor class state with React Hooks API useState().
6. Refactor the all the input resize logic and window.addEventListener(‘resize’,

this.resizeInput, false) with React Hooks API useEffect()
7. Refactor values created by React.createRef() with React Hooks API useRef(null).

#1~
The codes after refactor

https://github.com/unbug/codelf/blob/master/src/components/SearchBar.js

useRef()

useState()

Lifecycle of useState()

Component
function called

Init state

Render

Update state

useEffect()

Lifecycle of useEffect()

Component props/state
updated

Trigger effectTrigger effect cleanup

Render

Component
function called

Re-render

~#2
The codes before refactor

https://github.com/unbug/codelf/blob/legacy-without-react-hooks/src/components/VariableList.js

The challenges
1. Instance variables (animationName and lastPageLen)
2. Expensive calculation (renderPage()).

useMemo()

useRef()

#2~
The codes after refactor

https://github.com/unbug/codelf/blob/master/src/components/VariableList.js

Integrating with third-party libraries

~#3
The codes before refactor

https://github.com/unbug/codelf/blob/legacy-without-react-hooks/src/components/SourceCode.js

The challenges
1. Multiple third-party libraries in components
2. Duplicate logic in multiple components

Custom React Hooks

#3~
The codes after refactor

https://github.com/unbug/codelf/blob/master/src/components/SourceCode.js

More Custom React Hooks
useAuth
useEventListener
useWhyDidYouUpdate
useDarkMode
useMedia
useLockBodyScroll
useTheme
useSpring
useHistory
useScript
useKeyPress
useDebounce
useOnScreen
usePrevious
useOnClickOutside
useAnimation
useWindowSize
useHover
useLocalStorage

https://usehooks.com/
https://github.com/gragland/usehooks

https://usehooks.com/useAuth/
https://usehooks.com/useEventListener/
https://usehooks.com/useWhyDidYouUpdate/
https://usehooks.com/useDarkMode/
https://usehooks.com/useMedia/
https://usehooks.com/useLockBodyScroll/
https://usehooks.com/useTheme/
https://usehooks.com/useSpring/
https://usehooks.com/useHistory/
https://usehooks.com/useScript/
https://usehooks.com/useKeyPress/
https://usehooks.com/useDebounce/
https://usehooks.com/useOnScreen/
https://usehooks.com/usePrevious/
https://usehooks.com/useOnClickOutside/
https://usehooks.com/useAnimation/
https://usehooks.com/useWindowSize/
https://usehooks.com/useHover/
https://usehooks.com/useLocalStorage/
https://usehooks.com/
https://github.com/gragland/usehooks

Refactor a Container component

Container pattern

~#4
The codes before refactor

https://github.com/unbug/codelf/blob/legacy-without-react-hooks/src/containers/MainContainer.js

The challenges
1. Too many states
2. Update multiple states in a same place
3. Too much efforts to turn each state property into a useState()

A case of ReduxJS

#4~
The codes after refactor

https://github.com/unbug/codelf/blob/master/src/containers/MainContainer.js

useReducer()

Lifecycle of useReducer()
Component

function called

Init reducer

Render

Update state

Init state

Dispatch actions

useState() vs useReducer()
Off course, useState({...}) can do the same thing. But useReducer() is easier to
define actions to handle complicated logic and keep the component clean, which
is making it more scalable. useState() is great for “logicless” component. That’s a
big difference use case between useState() and useReducer() .

Summary

The bad part
1. useState() doesn't return a setter and it won’t merge new state into the old state automatically, that’s

sucks then setState() of React Class Components.
2. React effects run on every update. Which make cache local values as instance properties in React

Class Components is difficult. We have to be very careful otherwise it will lead to bugs.
Unfortunately, the ESLint plugin doesn’t cover this kind of case. Such as, we define a local variable
let val = null then update the val somewhere in the component, but if an update has been triggered,
the val will be reset as null again.

3. A completely rewritten for a large project will cost a huge effort. But if we don’t rewrite all the
components, reuse new components state logic for old components is impossible, we also can’t
reuse state logic in a React Class components, duplicate components, and codes will be made.

4. You can turn a React Function into a React Class, or turn a React Class into a React Function. But
turn a React Function with React Hooks into React Class is hard, sometimes even impossible. It will
be a pain to copy codes from a project to another project.

5. There is no way to handle Error Boundaries with React Hooks right now, which means you won’t be
able to refactor a React Class that handle errors with componentDidCatchand
getDerivedStateFromError . But it is a very common use case, right?

Thanks
Read it on Medium

https://medium.com/@unbug/ive-completely-rewritten-two-projects-with-react-hooks-here-is-the-good-and-the-ugly-48c28a103f52

