

第三届

FEDAY(前端开发日)

SELF INTRODUCTION

- ▶ 叶俊星 (Jasin Yip)
- ▶ 美团点评资深前端工程师
- ▶ 知乎前端开发、JavaScript 话题优秀回答者
- ▶ CyclejsCN (Cycle.js 中文社区) 发起者

OVERVIEW

- Introduction
 - What is reactive programming?
 - What is stream?
- Cycle.js What if the user was a function?

WHAT IS REACTIVE PROGRAMMING?

$$a := b + c$$

$$a := b + c$$

- Imperative Programming
 - When **b** or **c** changed, no effect on **a**.
- Reactive Programming
 - When **b** or **c** changed, **a** automatically updated.

WHY SHOULD WE USE REACTIVE PROGRAMMING?

For example: count HTTP request times

PASSIVE PROACTIVE HTTP REQUEST COUNTER class HttpRequest { send () { // ... counter.increment()

LISTENABLE REACTIVE

HTTP REQUEST

```
class HttpRequest {
 send(){
  eventBus.emit('requestDone')
```

```
class Counter {
 constructor (eventBus) {
   eventBus.on('requestDone')
   .then(this.increment)
```

	Passive	Reactive
How does Counter work?	Find usages	Look inside

	Proactive	Listenable
Which modules are affected by HttpRequest?	Look inside	Find usages

Separation of Concerns

The Selling Point of Reactive Programming

WAYS TO IMPLEMENT REACTIVE PROGRAMMING

- EventBus
- Object.defineProperties
- ► ES2015 Proxy
- Streams (with some libraries like RxJS, xstream)
- • •

WHAT IS STREAM?

A typical array:

A typical stream:

Array: sequence over space

1 2 3

> Stream: sequence over time

[1, 2, 3]

map(e => e * 2)

[2, 4, 6]

[2, 6, 9]

filter(e => e < 7)

[2, 6]

USAGE SCENARIOS (abstract froms and tos)

USAGE SCENARIOS (abstract froms and tos)

Multiple places

use

the same state

Normally using Redux:

```
const changeTodo = todo => {
 dispatch({ type: 'updateTodo', payload: todo })
const changefromDOMEvent = () => {
 const todo = formState
 changeTodo(todo)
const changefromWebSocket = () => {
 const todo = fromWS
 changeTodo(todo)
```

USAGE SCENARIOS (abstract froms and tos)

Using stream(with RxJS):

```
const changeFromDOMEvent$ = Rx.Observable
 .fromEvent($('.btn', 'click'))
 .map(evt => evt.data)
const changeFromWebSocket$ = Rx.Observable
 .fromEvent(ws, 'message')
 .map(evt => evt.data)
// Merge all data source
const changes$ = Rx.Observable.merge(
 changeFromDOMEvent$,
 changeFromWebSocket$
changes$.subscribe(todo => dispatch({ type: 'updateTodo', payload: todo }))
```

USAGE SCENARIOS (abstract froms and tos)

iPhone 6s Plus - iPhone 6s Plus / iO... Reactive programming & stream processing 6:04 PM 提交订单 in our production usage. 7天连锁酒店(北京站二店) 4-13入住, 4-14离店, 1晚 大床房(94病大促)-大床,无早餐,共¥137 间整晚保留 CombineLatest 支付价格 入住日期 离店日期 户选择优惠 20:00之前 联系手机 186 4021 3575 ₫ 酒店新客首单立减23元 CombineLatest 惠1优惠价 🏿 抵用券 使用抵用券 > 格&优惠 入住信息 优惠类型 惠价格 FlattenMap Мар 惠3折扣&峰 惠3优惠价 总价: ¥114 已优惠 ¥23

Just use stream!

The solution for the complicate situation below

WHAT IF THE USER WAS A FUNCTION?

JAVASCRIPT IN 2016/2017

Computer Human

Computer

Insight #1: Uls are cycles

- Insight #1: Uls are cycles
- Insight #2: Uls are functions

举报不当的联想查询

- Insight #1: Uls are cycles
- Insight #2: Uls are functions
- Insight #3: Uls are async

Computer

Computer

- Insight #1: Uls are cycles
- Insight #2: Uls are functions
- Insight #3: Uls are async
- Insight #4: Uls are symmetric

- Insight #1: Uls are cycles
- Insight #2: Uls are functions
- Insight #3: Uls are async
- Insight #4: Uls are symmetric
- Insight #5: The user is a function

HOW TO CODE IT?


```
function computer (url: EventStream<String>): EventStream<screen> {
    // ...
}
```

```
let screenStream = computer(interactionStream)
screenStream.listen(function (ev) { ... })
```



```
function user (screenStream: EventStream): EventStream {
   // Need your brain here...
}
```



```
function user (screenStream: EventStream): EventStream {
   // Need your brain here...
}
```

```
function user (screenStream: EventStream): EventStream {
 screenStream.listen(function (screen) {
  renderToDOM(screen)
 })
 let interactionEvents = new EventStream()
 document.addEventListener('*', function (ev) {
  interactionEvents.emit(ev)
 return interaction Events
```

```
function user (screenStream: EventStream): EventStream {
 screenStream.listen(function (screen) {
  renderToDOM(screen)
 let interactionEvents = new EventStream()
 document.addEventListener('*', function (ev) {
  interactionEvents.emit(ev)
 return interaction Events
```

```
function user (screenStream: EventStream): EventStream {
 screenStream.listen(function (screen) {
  renderToDOM(screen)
 let interactionEvents = new EventStream()
 document.addEventListener('*', function (ev) {
  interactionEvents.emit(ev)
 return interaction Events
```

let interactionStream = user(screenStream.listen)
interactionStream.listen(function (ev) { ... })

let screenStream = computer(interactionStream)
let interactionStream = user(screenStream)

let screenStream = computer(interactionStream)
let interactionStream = user(screenStream)

let screenStream = computer(interactionStream) *let* interactionStream = user(screenStream) let a = f(b) let b = g(a) let b = g(f(b))

let interactionStream = makeEmptyEventStream()

let screenStream = computer(interactionStream)
let interactionStream2 = user(screenStream)

let interactionStream = makeEmptyEventStream()

let screenStream = computer(interactionStream)
let interactionStream2 = user(screenStream)


```
let interactionStream = makeEmptyEventStream()
let screenStream = computer(interactionStream)
let interactionStream2 = user(screenStream)
interactionStream2.listen(function (ev) {
  interactionStream.emit(ev)
})
```

```
let interactionStream = makeEmptyEventStream()
```

```
let screenStream = computer(interactionStream)
let interactionStream2 = user(screenStream)
interactionStream2.listen(function (ev) {
  interactionStream.emit(ev)
})
```

```
let interactionStream = makeEmptyEventStream()
let screenStream = computer(interactionStream)
let interactionStream2 = user(screenStream)
interactionStream2.listen(function (ev) {
  interactionStream.emit(ev)
}
```


CYCLE.JS

Computer Human

ONE MORE THING...

HANKS

REFERENCE

- Cycle.js
- RxJS
- ▶ Functional Programming 6.1 Streams
- ▶ What if the user was a function? ——Andre staltz
- ▶ 流动的数据——使用 RxJS 构造复杂单页应用的数据逻辑 ——徐飞
- ▶ 单页应用的数据流方案探索 ——徐飞